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Abstract

* Drug use in terms of addiction treatment and dropout
* Predicting these events using Al models

« Combining with traditional methods to build a digital phenotype of
an individual prior to entering treatment



Introduction: ASI

* A broad spectrum of factors are considered before treatment
intake to predict severity of an individual's addiction (ASI)
* Information incomplete in this process

* These factors used to place individuals into AS| Indices




Introduction: Al
* Prevalence of social media lends itself to understanding drug use

* Inspired by previous work involving Al on social media not
necessarily for drug use

* Interesting because first time this modern approach (BERT) being
used in a clinical setting for understanding substance abuse

* Generally, use a modern deep learning approach to create a
digital phenotype representation of users from social media posts



Relation to Class Project

* Both working with social media
* Showing how results could be obtained from social media posts
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Study Design

e 269 patients had ASI conducted as well as social media posts
analyzed

* Previous 2 years of social media analyzed to make digital
phenotype
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Treatment outcomes

* Models used to predict outcomes at different time intervals
* 30, 60, 90-day outcomes
 Outcomes: remained abstinent, relapsed, dropped out

e Alternative Outcomes:

* 4 category: abstinent, relapse-in, relapse-out, dropped out
* 2 category: stay in treatment, dropped out
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Facebook Language

 Data from status posts(Status updates) and link posts(free text
posted by users)

Table 1. Demographics in the study.

Demographics Total sample Sample with 200-word restrictions
Ltk Total (N = 269) Remained abstinent Relapsed Dropped out

(N =68) (N = 83) (N=118)

Age (mean, SD) 33.1 (9.7) 33.2 (94) 371 (9.8) 321 (8.9) 31.7 (8.7)

Sex, % Male 69.3% 63.6% 60.3% 62.7% 66.1%

Race, % Black 59.7% 62.8% 66.2% 72.3% 54.2%

Ethnicity, % Hispanic 13.5%

Never married 81.2%

Social media language

Number of words 43,395 (7709) 4488 (8850) 4171 (7879) 2863 (4423) 5814 (11,178)
(mean, SD)

Drug use history

Drug treatment attempts 3.8 (4.1)
(mean, SD)

Reason entering treatment

Alcohol 9.9%
Marijuana 28.0%
Sedatives 2.2%
Cocaine/Crack 18.8%
Stimulants 1.0%
Hallucinogens 7.7%
Heroin 22.2%
Other Opiates 7.3%

Other Substances 2.8%






Transformers: Background

* General overview, Background, RNNS, etc
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Methods: Transformers

* Encoder, decoder
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Transformers: BERT

e Pretrained Transformer
model to understand

e Tokens from the attention
step used bidirectionally

* Pretrained on general
unlabeled data -> output
layer
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Digital Phenotype

* Most of the work already done in BERT pretraining

* 61 features from intake survey, demographic information and text
analysis measures from the DLAKT package



Model Training

* 3 outcome model produced using ridge penalized logistic
regression

* 4 and 2 outcome models which incorporated ASI and digital
phenotype produced using random forest model with extremely

randomized trees algorithm

* 10-fold cross-validation used to avoid overfitting of models



Classifying model accuracy

b TP
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Classifying model accuracy: AUC ROC

PR * Look atintegralfrom Oto 1 of this curve
y 7 TP vs. FP rate at
7 ohne dheclidsion
thresho .
o7 * Gives performance of model across all
s 7 possible classification thresholds
& / TTP vs. FP rate at 1
another decision
/ threshold
/

FP Rate 1



Results: Predicting dropout risk
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Both models which include the Al based digital
phenotype performed better than the
traditional ASI

Relatively large improvement over solely ASI
suggests the value of the digital phenotype in
predicting treatment dropout at 90 days



Results: model evaluation

e 3 outcome, 4 and 2 outcome results
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Results: Dropout risk evaluation

* Placing individuals into pretreatment risk quartiles aligns with
their eventual categorization into the 4 outcome categories

100-
- \
5 80 Lowest risk quartile
\

£ 60 %

c \ 2" risk quartile

- \

S \

= 40 \

-g 0 M

a | @ TFEeSSea

(o) T

& 20 L T ==
Highest risk quartile

0

0 30 60 90
Treatment time



Discussion: ASI and DP

* Combining ASl and DP provides valuable insights and predictive
power for outcomes of individuals in substance use treatment

* Dropoutrisk and treatment outcomes can be predicted more
effectively using the ASlI and DP models



Discussion: Limitations

* These models have a very small sample size

* Abstinent and relapse classification requires a patient to self
report

* BERT too general



Discussion: Feasibility

* Models may not generalize across wider population
* 70% of adults use social media; still a large source of data

* Reddit now restricts downloads of user and subreddit data,
unsure availability of such data



Conclusions

* Predicting treatment outcomes
* Continuous monitoring
* Al identifies new variables of importance

* All this can improve efficiency and accessibility of substance use
treatment
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